Markus Bläser ¹

¹Saarland University, Germany

²University of Wollongong, Australia

ALTEQ = GMW Σ -protocol based on ATFE + Fiat-Shamir.

The ALTEQ signature scheme is founded on the hardness of finding isomorphisms between alternating trilinear forms modulo the general linear group acting by base change. The Goldreich-Micali–Wigderson (GMW) motif tailored to this group action builds a Σ -protocol identification scheme, whose soundness and zero-knowledge rely on this hardness. Then, the Fiat-Shamir transform removes the interaction from the Σ -protocol to yield a signature scheme.

Alternating Trilinear Form Equivalence Problem (ATFE)

Let \mathbb{F}_q denote the finite field with q elements. An alternating trilinear form ϕ is a function

$$\begin{split} \mathbb{F}_q^n \times \mathbb{F}_q^n & \to \mathbb{F}_q \\ (u, v, w) & \longmapsto \sum_i \sum_j \sum_k \phi_{ijk} u_i v_j w_k \end{split}$$

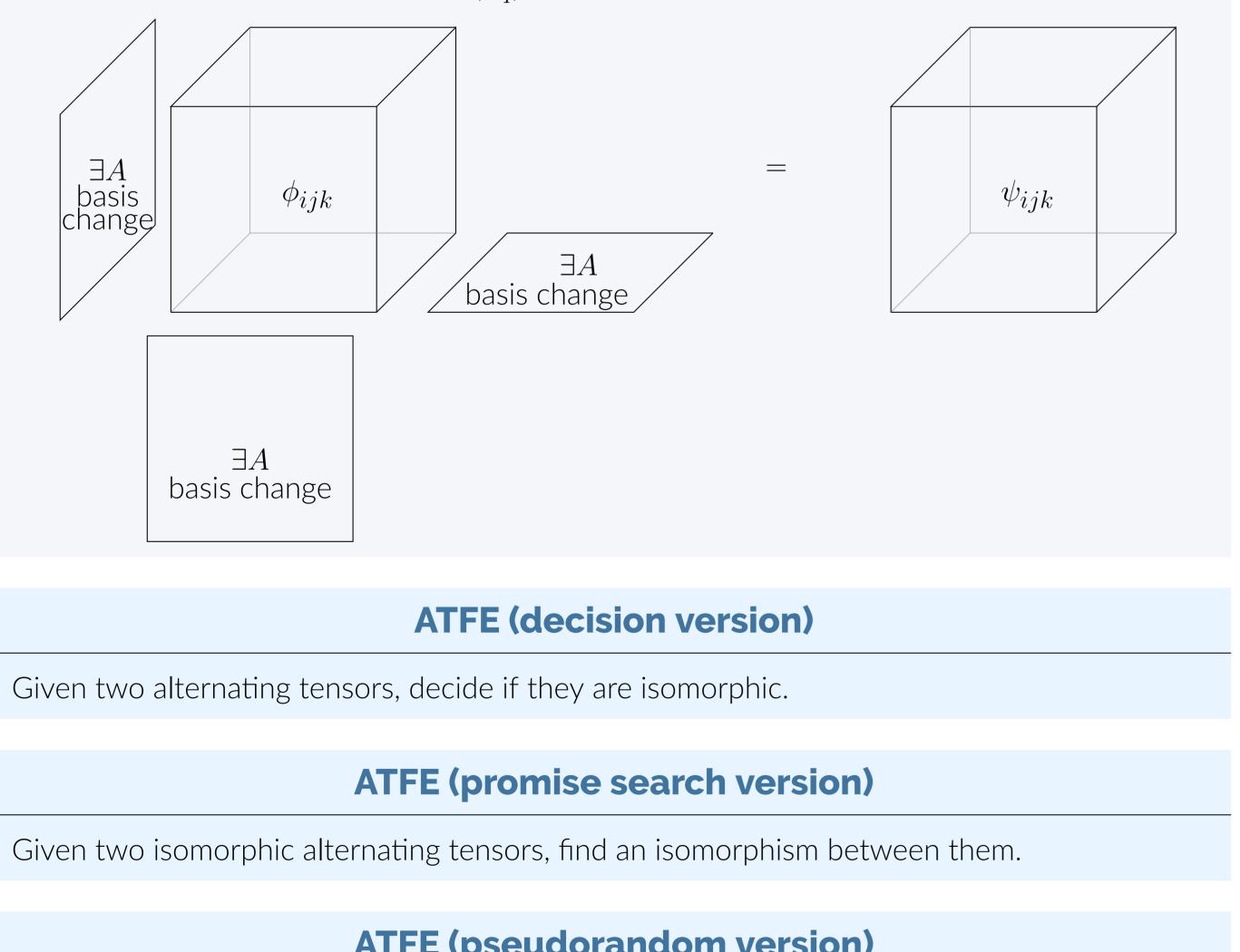
that is linear in each of its three arguments, satisfying the anti-symmetry constraint

$$\phi(u, u, w) = \phi(u, v, v) = \phi(w, v, w) = 0, \forall u, v, w \in \mathbb{F}_q^n.$$

Invertible matrices $A \in GL_n(\mathbb{F}_q)$ act on alternating tensors by the same basis change

$$(A, \phi(\star, \star, \star)) \longmapsto \phi(A^T \star, A^T \star, A^T \star)$$

on each of the three dimensions. Two alternating trilinear forms ϕ, ψ are isomorphic if there exists such a basis change $A \in GL_n(\mathbb{F}_q)$ taking one to the other, as pictured below.



Given two alternating tensors, decide if they are isomorphic.

ATFE (pseudorandom version)

Distinguish the following two distributions:

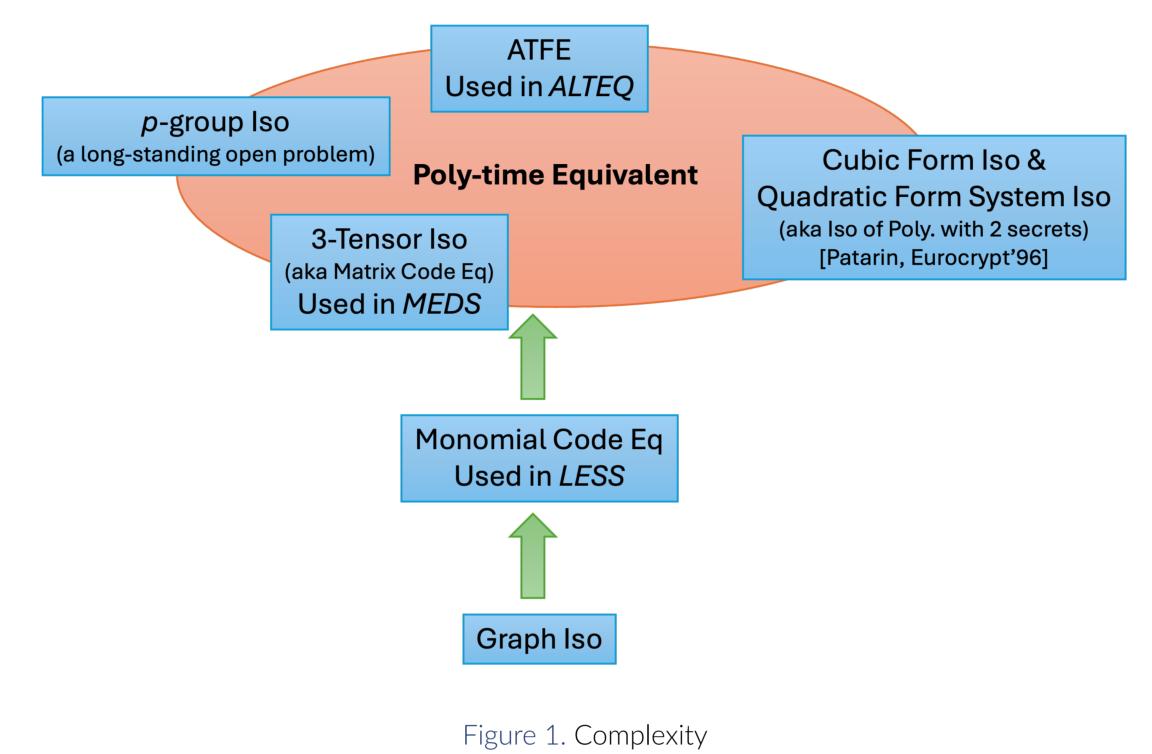
- Random distribution: two randomly sampled alternating tensors.
- Pseudorandom distribution: two randomly sampled alternating tensors in the same orbit.

ALTEQ : ALternating Trilinear form EQuivalence

Dung Hoang Duong²

Tensor Isomorphism Complexity Class

The Tensor Isomorphism (TI) complexity class was introduced in [4] to capture the complexity of several isomorphism problems for algebraic structures, such as tensors, groups, and polynomials. The following relations between isomorphism problems are shown in [4, 5].

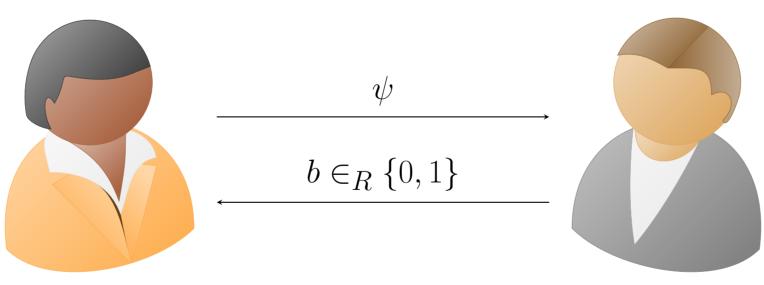


Protocol

Secret key: a invertible matrix $A \in GL(n, \mathbb{F}_q)$.

Public key: two alternating trilinear form ϕ_0 and ϕ_1 such that $\phi_0 \circ A = \phi_1$.

- 1. Alice samples a random matrix $B \in GL(n, \mathbb{F}_q)$ which transforms ϕ_0 to $\psi = \phi_0 \circ B$.
- 2. Bob flips a random coin $b \in_R \{0, 1\}$.



- 3. Based on b, the protocol goes into one of the following.
- If b = 0, Alice sends r := B to Bob; otherwise sends $r := A^{-1}B$.
- If b = 1, Bob verifies whether $\phi_0 \circ r = \psi$; otherwise verifies whether $\phi_1 \circ r = \psi$.

Before applying Fiat-Shamir, need to reduce the soundness error by repeating λ times in parallel. The protocol can be improved with the following optimizations:

- **Larger challenge space:** reducing the soundness error from 1/2 to $1/2^C$; public key size C factor increases.
- 2. Unbalanced challenge space: reducing the signature size by replacing partial responses with seeds; the round number r increases.

Anand Kumar Narayanan ³ Thomas Plantard ⁴ Youming Qiao ⁵ Arnaud Sipasseuth ⁶

³SandboxAQ, USA ⁴Nokia Bell Labs, USA ⁵University of Technology Sydney, Australia

⁶KDDI Research, Japan

Parameters & Performance

- Freq. 5.0GHz, Min 4.7GHz).
- Memory: 64GB.
- Operating system: Red Hat Enterprise Linux 8.6 (Ootpa).
- Compiler: gcc version 8.5.0 20210514 (Red Hat 8.5.0-10).

Parameter	Parameters	Private key	Public key	Signature	Public key + signature
set	(n,q,r,K,C)	Size (Bytes)	Size (Bytes)	Size (Bytes)	Size (Bytes)
I	$(18, 2^{24} - 3, 159, 21, 4)$	32	9824	22684	32508
	$(27, 2^{21} - 9, 342, 28, 4)$	48	30761	61214	91975

Parameter	Parameters	Private key	Public key	Signature
set	(n,q,r,K,C)	Size (Bytes)	Size (Bytes)	Size (Bytes)
	$(18, 2^{24} - 3, 130, 8, 1960)$	32	4798112	9792
	$(27, 2^{21} - 9, 250, 12, 1420)$	48	10902986	28772

Table 2. Key and Signature Sizes for ShortSig-ALTEQ

parameter set		Key gen	Sign	Verify	Sign+verify
	cycles	1038786	10979754	9939474	20919228
I	time (ms)	0.306	3.126	2.818	5.944
	cycles	6586317	101706473	98377696	200084169
	time (ms)	1.820	28.333	27.412	55.745

Table 3. Performance of Balanced-ALTEQ

parameter set		Key gen	Sign	Verify
I	cycles	103829839	9147687	12340116
	time (ms)	33.323	2.579	3.350
	cycles	368025726	78018518	85334976
	time (ms)	97.706	20.895	22.736

Table 4. Performance of ShortSig-ALTEQ

Ongoing Improvements

- [1] Ward Beullens. Graph-theoretic algorithms for the alternating trilinear form equivalence problem. CRYPTO, 2023.
- signatures based on isomorphism problems: Qrom security and ring signatures. <u>PQCrypto</u>, 2024.
- 2024/495, 2024
- SIAM J. Comput., 2023.

Bob: ϕ_0, ϕ_1

⁷University of Birmingham, UK

Processor: Intel Xeon E-2288G 3.7GHz 8 cores 16MB L3 Cache HT Enabled (Max Turbo

Table 1. Key and Signature Sizes for Balanced-ALTEQ

• [3] introduces a technique that could reduce the signature size by 1/3 to 1/2.

• An ongoing project indicates that using quadrilinear forms (or 4-tensors) could thwart some of the main cryptanalytic attack approaches and lead to smaller signature sizes.

References

[2] Markus Bläser, Zhili Chen, Dung Hoang Duong, Antoine Joux, Ngoc Tuong Nguyen, Thomas Plantard, Youming Qiao, Willy Susilo, and Gang Tang. On digital

[3] Tung Chou, Ruben Niederhagen, Lars Ran, and Simona Samardjiska. Reducing signature size of matrix-code-based signature schemes. Cryptology ePrint Archive,

[4] Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for tensors, groups, and polynomials i: Tensor isomorphism-completeness.

[5] Joshua A. Grochow, Youming Qiao, and Gang Tang. Average-case algorithms for testing isomorphism of polynomials, algebras, and multilinear forms. STACS, 2021 [6] Anand Kumar Narayanan, Youming Qiao, and Gang Tang. Algorithms for matrix code and alternating trilinear form equivalences via new isomorphism invariants.