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Version 1.0.0 2023-06-01

– Initial version.

Version 1.0.1 2023-09-14

1. Adding a machine to test performance; see Section 5.2.
2. Fixing typos.

Version 1.1 2023-09-15

1. Fig 2: In Vf(), we add a function checkInvertibility to verify that the diagonal elements
in column matrices are non-zero to guarantee invertibility so as to prevent the attack
proposed by Markku-Juhani O. Saarinen.

2. Section 2.4: delete the function actingOnATFSwTensor, add two functions columnsMatrix
and columnsDecomposition.

3. Fig 2: In Sign(), we submit column matrices {Dcol
i }i s.t. ci ̸=C instead of normal invertible

matrices {Di}i s.t. ci ̸=C .
4. Fig 2: in Vf(), we remove actingOnATFSwTensor and replace it with actingOnATFS

when ci ̸= C.
5. Because of (2),(3) and (4), there is a performance improvement in the code speeds.

Please see Section 1.3, Section 5.2 for the updated performance.
6. Fixing typos.

Version 1.1.1 2023-09-18

1. Corrected a mistake in the analysis of the low-rank birthday attack as in Appendix A.6.
2. Removed the parameters and report on level V, which were only a suggestion before,

as the parameters do not suffice for the 256-bit security due to the low-rank birthday
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Version 1.1.2 2024-03-05
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3. We change the hash function to be able to customise the size of its input.
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1 Introduction

We present the digital signature scheme ALTEQ based on the hardness of the Alternating
Trilinear Form Equivalence (ATFE) problem.

The construction has two steps. First, following the Goldreich–Micali–Wigderson
(GMW) motif [GMW91], we devise a zero-knowledge protocol reliant on the hardness
of ATFE. We then apply the Fiat–Shamir (FS) transformation [FS86] to remove the in-
teraction from the zero-knowledge protocol and obtain a digital signature scheme. An
overview of these steps will be presented in Section 1.1.

Some key considerations for ALTEQ are as follows.

Simple and standard protocol design. We use the standard Goldreich–Micali–Wigderson
protocol [GMW91] and Fiat–Shamir transformation [FS86]. Both GMW and FS are clas-
sical and their securities are well-understood in classical and quantum random access
models [KLS18,LZ19,DFMS19]. For example, the QROM security of ATFE-GMW-FS can
be proved via two approaches [BCD+22] (based on certain assumptions on the ATFE
problem), one of which gives a tight security reduction.

Support for ATFE: post-quantum, complexity-theoretic, and practical. Our choice of ATFE
is based on several theoretical and practical considerations.

1. From the quantum algorithm viewpoint, there is a strong negative evidence for the
standard approach of the hidden subgroup problems to work for general linear groups
over finite fields [HMR+10]. This could be considered as an inherent bottleneck for
current quantum algorithms to work against the general linear hidden subgroup prob-
lem. Such an argument is applicable to ATFE as it relies on a group action by general
linear groups over finite fields.

2. From the computational complexity viewpoint, the recent complexity theory of ten-
sor isomorphism [GQ21b,GQT21] reveals that ATFE is polynomial-time equivalent
to many algebraic isomorphism problems, including tensor isomorphism, matrix code
equivalence, p-group isomorphism, and polynomial isomorphism. The monomial code
equivalence reduces to ATFE in polynomial time [GQ21a].
These problems have been studied in several research communities, such as coding
theory, cryptography, theoretical computer science, and computational group theory.
Despite research efforts from these communities, these problems are regarded as dif-
ficult to solve in practice. See Appendix A.1 for more details.

3. From the practical algorithm viewpoint, the connections with other problems allows us
to tap into the pool of practical algorithms for polynomial isomorphism [BFV13], ma-
trix code equivalence [CNP+22], group isomorphism [LQ17], and min rank [BBC+20].
Recent new algorithms for ATFE [NQT24,Beu22] are built on works along these lines.
From this perspective, we could say that the practical hardness of ATFE has been
studied in several communities for quite some time.

1.1 Overview of the basic approach

This protocol consists of two steps. First, apply the Goldreich–Micali–Wigderson (GMW)
protocol to ATFE to obtain an identification (or Sigma) protocol. Second, apply the Fiat–
Shamir (FS) transformation to the identification protocol.

For a clear overview, we introduce the GMW-FS design, and the ATFE problem, sepa-
rately. In particular, for the GMW-FS design, we shall introduce it first using an abstract
group action.
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The basic GMW-FS design. The GMW-FS design takes a group action and gives a
digital signature scheme.

Group action. Let G be a finite group, S a finite set, and α : G×S → S be a group action.
We assume that group and set elements have efficient representations in algorithms, α
can be computed efficiently, and elements of G and S can be sampled in uniform random
efficiently.

Notation. For n ∈ N, [n] := {1, 2, . . . , n}. The notation ←R denotes uniform random
sampling; for example, g ←R G denotes that g is sampled in uniform random from G.

Parameters for the basic GMW-FS design. The following system parameters are used.

1. C = 2c: The number of set elements as the public key, and the number of group
elements as the private key.

2. r: The number of rounds in the scheme.

Key generation.

1. s1 ←R S.
2. g1 := Id, the identity element in the group G.
3. g2, . . . , gC ←R G
4. For i = 2, . . . , C, si := α(gi, s1).
5. Public key is (s1, . . . , sC) ∈ SC .
6. Private key is (g1, . . . , gC) ∈ GC .

Signing. LetM be the message to be signed. Let H : {0, 1}∗ → {0, 1}ℓ be a hash function,
where ℓ = r · c.

1. For i ∈ [r], hi ←R G. Let ti := α(hi, s1).
2. Let L := H(M | t1 | · · · | tr) ∈ {0, 1}ℓ.

Slice L into r length-c bit strings, i.e. L = b1 | · · · | br, where bi ∈ {0, 1}c.
3. For i ∈ [r], let fi := hi · g−1bi .
4. The signature is (b1, . . . , br, f1, . . . , fr).

Note that α(fi, sbi) = α(hi · g−1bi , sbi) = α(hi, α(g
−1
bi
, sbi)) = α(hi, s1) = ti.

Verification. The verifier receives the messageM and the signature (b1, . . . , br, f1, . . . , fr).

1. For i ∈ [r], let t′i := α(fi, sbi).
2. Let L′ := H(M |t′1| . . . |t′r).
3. Accept if L′ is equal to L = b1 | · · · | br. Reject otherwise.

The group action underlying ATFE. The ALTEQ scheme is obtained by instantiating
the group action α : G× S → S as follows. See also Section 2.3 for more details.

Parameters for the ATFE group action.

1. n: the vector space dimension.
2. q: the finite field order.
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The ATFE group action definition.

1. The group G is GL(n, q), the general linear group over the finite field of order q.
2. The set S is the set of alternating trilinear forms ATF(n, q) := {ϕ : Fnq × Fnq × Fnq →

Fq}, where ϕ is trilinear (linear in each argument) and alternating (ϕ evaluates to 0
whenever two arguments are the same).

3. The action α is defined as follows. For A ∈ GL(n, q) and ϕ ∈ ATF(n, q), ϕ ◦ A is an
alternating trilinear form defined by (ϕ ◦ A)(u, v, w) = ϕ(At(u), At(v), At(w)).

1.2 The ALTEQ scheme

The ALTEQ scheme implementation incorporates several measures to enhance the system
performance. Some main points are as follows.

Unbalanced challenges. We incorporate the unbalanced challenge technique [FS86]. Briefly
speaking, this means that in the GMW identification protocol, we set a fixed number of
challenges to be some specific value. This is because when the challenge is of this value,
the response is a random matrix expanded from a short seed, so sending this seed through
reduces the communication (and thus the signature size). The cost is that more rounds
are required, therefore increasing the sign and verification times.

Implementation considerations. The main algebraic operation is the group action com-
putation, which relies on modular arithmetic. For modular arithmetic, we use a method
for Pseudo-Mersenne numbers from [Cra92]. For group actions, we implement several op-
timisations, such as the tensorial viewpoint of alternating trilinear forms, and the use of
decomposing an invertible matrix into a product of matrices in a special form.

The security of the GMW-FS design. The security of the GMW-FS design of digital sig-
natures is well-understood in both the Random Oracle Model (ROM) and the Quantum
Random Oracle Model (QROM) models. The existential unforgeability under chosen-
message attack (EUF-CMA) security is well-known assuming some hardness notion of
group actions; a concrete treatment for ATFE was presented in [TDJ+22]. The EUF-CMA
security in QROM was shown in [BCD+22] based on [KLS18,LZ19,DFMS19] via the
perfect unique response and lossy properties.

Parameter choices. Let λ be the bit security level. To determine the choices of n and q
(the ATFE parameters), we rely on two main approaches for solving ATFE: the Gröbner
basis approach and the approach based on low-rank points. The Gröbner basis approach
determines the vector space dimension n, and then the low-rank based approach deter-
mines the field order q. The GMW-FS design parameters, namely the round number r
and the form number C, and the unbalanced challenge parameter K, can be determined
in a straightforward manner. There can be certain flexibility in getting some trade-offs
between signature and public key sizes, as well as key generation, sign, and verify times.

1.3 An overview of parameters and performance of ALTEQ

We have parameter sets I and III of ALTEQ aimed for NIST security categories I/II
and III/IV respectively. We consider two groups of parameters, one for small public
key+signature sizes (called Balanced), and the other one for short signatures (called
ShortSig).
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We tested the codes on a server with CPU as Intel Xeon E-2288G 3.7GHz 8 cores
16MB L3 Cache HT Enabled (Max Turbo Freq. 5.0GHz, Min 4.7GHz), 64GB memory,
and on Red Hat Enterprise Linux 8.6. The codes are compiled by gcc version 8.5.0.

An overview of the results can be found in Table 1. The sizes in Table 1 are measured
in KiloBytes (KB, 1 KB=1024 bytes), and the timings are measured in millisecond (ms,
1 ms=0.001 second). For more detailed information, please see Section 5.

parameter set mode
public key
size (KB)

signature
size (KB)

key generation
(ms)

signature
generation (ms)

signature
verification (ms)

I
Balanced 8 16 0.093 0.629 0.496
ShortSig 512 10 1.902 0.194 0.092

III
Balanced 32 48 0.582 6.986 6.483
ShortSig 1024 24 5.152 1.705 1.304

Table 1: An overview of the parameters and performance of ALTEQ.

1.4 Remarks, advantages, and limitations

Variations of the parameters. The parameters in Table 1 can be tuned to allow for
some trade-offs between the parameters. For example, for the balanced level I option,
it is possible to gain approximately 25% speed-up at the cost of increasing the public
key+signature sizes by 4KB.

It is also possible to further speed-up the codes, and optimize the memory costs during
the executions of the sign and verify procedures.

Reducing the signature sizes. The signature sizes of ALTEQ can be reduced at the expenses
of increasing the signing and verification times, if one of the following two techniques is
used.

The first one is called the seed tree. The seed tree is used to generate the challenges.
It starts with the root and use a pseudorandom generator to generate the challenges via
a tree structure. A version of ALTEQ with seed trees has been implemented, but it is not
included in this submission, as more experiments will be needed to examine the trade-offs
it brings.

The second one is called the multiparty computation in the head (MPC-in-the-head)
protocol. It is a classical technique and recently shown to work for the GMW-FS design in
general [Jou23]. It remains to investigate into this optimization technique; a preliminary
study can be found in [BCD+22].

Ring signatures. The GMW-FS design supports the linkable ring signature functionality
following [BKP20], and a preliminary implementation based on ALTEQ was reported in
[BCD+22]. This would allow a signer can sign on behalf of a group chosen by him-or-
herself, while retaining anonymous with in the group without a complex setup procedure
or the requirement for a group manager. The linkable property ensures that signatures
produced by the same signer can be publicly linked.

Advantages. We’ve mentioned some advantages, such as simple and standard protocol
design, supporting ring signature functionality, and some flexibility in variations of the
parameters. The choice of ATFE in post-quantum cryptography is backed by a strong
limitation on known quantum algorithm techniques [HMR+10]. The speeds of our imple-
mentation, though still slower than lattice-based schemes, are acceptable in general.
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Limitations. Our public key and signature sizes are still relatively large, especially for
level III. There are also some research questions for better understanding the effects of
the direct Gröbner basis attacks (see Appendix A.2 and also Footnote 13).

2 Basic operations

2.1 Basic notations

We list some common notations.

1. Fq, q a prime power: the finite field of order q.
2. Fnq : the vector space of length-n column vectors over Fq.
3. M(n, q): the linear space of n× n matrices over Fq.
4. GL(n, q): the general linear group of degree n over Fq.
5. For u ∈ Fnq and A ∈ M(n, q), ut and At denote their transposes.
6. For a real number a, let ⌈a⌉ (resp. ⌊a⌋) denote the smallest (resp. largest) integer that

is greater (resp. smaller) than a. Denote by ⌊a⌉ the integer closest to a.
7. For two non-negative integers a, b, let

(
a
b

)
be the binomial coefficient.

8. For a positive integer m, let [m] := {1, 2, . . . ,m}.
9. For a finite set S, let a ∈R S mean that a is a uniformly random sample from S.

2.2 Trilinear forms and a natural group action on them

A trilinear form on Fnq is a map ϕ : Fnq ×Fnq ×Fnq → Fq that is Fq-linear in each argument.
Such a trilinear form is called alternating if and only if ϕ evaluates to 0 whenever two
arguments are the same, i.e., for u, v ∈ Fnq , we have ϕ(u, u, v) = ϕ(u, v, u) = ϕ(v, u, u) = 0.
Denote by ATF(n, q) the linear space of all alternating trilinear forms on Fnq .

The general linear group GL(n, q) naturally acts on ATF(n, q) as follows: A ∈ GL(n, q)
sends ϕ to ϕ ◦A, defined as (ϕ ◦A)(u, v, w) := ϕ(At(u), At(v), At(w)) for all u, v, w ∈ Fnq .
This action defines an equivalence relation ∼= on ATF(n, q), namely ϕ ∼= ψ if and only if
there exists A ∈ GL(n, q) such that ϕ = ψ ◦ A.

2.3 Alternating trilinear forms and group actions in algorithms

Representing an alternating trilinear form in algorithms. An alternating trilinear form
ϕ : Fnq ×Fnq ×Fnq → Fq can be uniquely represented as

∑
1≤i<j<k≤n ci,j,ke

∗
i ∧ e∗j ∧ e∗k, where

ci,j,k ∈ Fq, e∗i is the linear form sending u = (u1, . . . , un)
t ∈ Fnq to ui, and ∧ denotes the

wedge (or exterior) product. The e∗i ∧ e∗j ∧ e∗k as an alternating trilinear form sends

(u, v, w) 7−→ det

ui vi wiuj vj wj
uk vk wk

 ,
where u = (u1, . . . , un)

t, v = (v1, . . . , vn)
t, w = (w1, . . . , wn)

t are in Fnq . Therefore, in
algorithms we can store the alternating trilinear form ϕ as

(ci,j,k : 1 ≤ i < j < k ≤ n), ci,j,k ∈ Fq,

which requires
(
n
3

)
· ⌈log q⌉ many bits.
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Representing the natural group action on alternating trilinear forms. The action of
GL(n, q) on ATF(n, q) can be represented concretely as follows. An A = (ai,j) ∈ GL(n, q)
sends

e∗i ∧ e∗j ∧ e∗k 7−→
∑

1≤r<s<t≤n

det

ai,r ai,s ai,taj,r aj,s aj,t
ak,r ak,s ak,t

 e∗r ∧ e∗s ∧ e∗t .
Since {e∗i ∧ e∗j ∧ e∗k, 1 ≤ i < j < k ≤ n} is a linear basis for ATF(n, q), the action of A on
a general ϕ ∈ ATF(n, q) can be defined by linearly extending this action.

2.4 Algorithms of group action on alternating trilinear forms

We list the algorithms of group action on alternating trilinear forms (ATFs) as follows.

Compress and decompress alternating trilinear forms. As discussed in Section 2.3, we
store

(
n
3

)
field elements for each ATF defined over GL(n, q). To facilitate some computa-

tion, we use the function depressATF to convert ATF into n×n×n tensor T over Fq with
n3 field elements, such that T (i, j, k) = ϕ(ei, ej, ek) for i, j, k ∈ [n], where ei is the ith
standard basis vector. We then use the function compressATF to convert the tensor back
to ATF. Additionally, we use decompressATFS({ϕatf}, c) and compressATFS({ϕtensor}, c)
to convert multiple ATFs and tensors, where c denotes the number of ATFs or tensors.

Group actions on alternating trilinear forms.

– The function actingOnATFS(ϕatf , {Acol}, c) outputs c ATFs by each column matrix in
{Acol} independent acting on ϕatf . see Section 4.2 and Appendix B for more details
about column matrices.

– The function invertingOnATF(ϕatf , A) is used as the inverse of the column matrix A
acting on an ATF ϕatf .

– The function columnsMatrix(Acol, Bcol) outputs a matrix C such that C = AB, where
Acol and Bcol be the column matrix representations of A and B respectively.

– The function columnsDecomposition(A) outputs the column matrix representation Acol

of A. Note there is a small probability that the matrix cannot be decomposed, then
the signning algorithm will restart with a new seed in this case 7.

2.5 Hashing

In our implementation we use SHA-3 as our hash function. The SHA-3 hash function
family consists of four hash functions: SHA224, SHA256, SHA384, and SHA512. Each
hash function produces an output with a different length of 224, 256, 384, and 512 bits,
respectively. In our signature scheme, we use SHA256, SHA384, SHA512 as our hash
function corresponding to ALTEQ instance I, III, IV respectively. All of our expanders
are AES-based, the following is a brief description of them; see Section 4.3 for specific
implementation details.

Generating the challenge. The function expandChallenge is used for generating challenges
from the unbalanced challenge space Cr,K . See Section 3.4 for unbalanced challenges.

7 In the reference code, if the column decomposition fails, there is a while loop for the signing algorithm until
it succeeds.
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Sampling the ATF. The function expandATF is used to generate the alternating trilinear
forms of the signature scheme. It maps a seed seed ∈ {0, 1}∗ to ϕ ∈ ATF(n, q).

Expanding the column matrix. The function expandColumns is used to generate the in-
vertible matrices. It maps a seed seed ∈ {0, 1}∗ to n columns matrices represented by a
matrix A.

Expanding the seeds. The function expandSeeds maps a seed seed ∈ {0, 1}2λ to some
specified number of seeds.

3 Key generation, sign, and verification procedures

In this section we present the signature scheme as proposed in [TDJ+22]. Note that here
C is not necessarily a power of 2 as presented in Section 1.1, since we use expander
instead of simply slicing the string. In order to enhance implementation feasibility, we
have made a slight modification to the basic approach. While the basic approach presented
in Section 1.1 involves generating C alternating trilinear forms (ATFs) corresponding to
C − 1 invertible matrices, our new version generates C + 1 ATFs corresponding to C
invertible matrices. It is important to note that this modification does not impact the
security or signature size, but merely adjusts the index.

3.1 Parameters

The ALTEQ scheme requires the following parameters:

1. n: the vector space dimension.

2. q: the finite field order.

3. λ: the security parameter in bits.

4. r: the round number.

5. C + 1: the number of alternating trilinear form.

6. K: the weight of the challenge8.

7. M : the message.

3.2 Key generation

The key generation procedure is described in Algorithm 1. Here we summarise the formats
of private and public keys.

Private Key. The private key consists of C invertible matrices A0, . . . , AC−1 ∈ GL(n, q).

The private key consists of

C · n2 (1)

field elements. Note that the private key can be generated by a pseudo-random generator,
so we only need a random seed as a private key.

8 K is the parameter required for the unbalanced challenge technique. As will be clear later, K denotes the
number of chai such that chai ̸= C.
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Public Key. The public key consists C + 1 alternating trilinear forms ϕ0, ϕ1, . . . , ϕC ∈
ATF(n, q) such that ϕi ◦ Ai = ϕC for i ∈ {0, . . . , C − 1}.

The public key consists of

(C + 1) ·
(
n

3

)
(2)

field elements. 9

Algorithm 1: Key generation.
Input: The variable number n ∈ N, a prime power q, the alternating trilinear form number C + 1.
Output: Public key: C + 1 alternating trilinear forms ϕi ∈ ATF(n, q) such that ϕi

∼= ϕj for any
i, j ∈ {0, . . . , C}.

Private key: C matrices A0, . . . , AC−1, such that ϕi ◦Ai = ϕC .
1 Randomly sample an alternating trilinear form ϕC : Fn

q × Fn
q × Fn

q → Fq.
2 Randomly sample C invertible matrices, A0, . . . , AC−1 ∈ GL(n, q).
3 For every i ∈ {0, . . . , C − 1}, ϕi ← ϕC ◦Ai.

4 For every i ∈ {0, . . . , C − 1}, Ai ← A−1
i .

5 return Public key: ϕ0, ϕ1, ϕ2, . . . , ϕC . Private Key: A0, . . . , AC−1.

3.3 Signature generation and verification

The algorithms 2 and 3 describe the signature generation and verification processes of
our basic scheme.

Algorithm 2: Signature generation process.
Input: The public key ϕ0, . . . , ϕC ∈ ATF(n, q). The private key A0, . . . , AC−1 ∈ GL(n, q). r, C, λ ∈ N.

Let AC = I, the identity matrix. The message M . A hash function H : {0, 1}∗ → {0, 1}2λ. An
expander Expand : {0, 1}2λ → {ai}i∈{0,...,r−1}, where ai ∈ {0, . . . , C}.

Output: The signature S on M .
1 for i ∈ {0, . . . , r − 1} do
2 Randomly sample Bi ∈ GL(n, q).
3 ψi ← ϕC ◦Bi.

4 end

5 Compute cha = H(M |ψ0| . . . |ψr−1) ∈ {0, 1}2λ.
6 (b0, . . . , br−1)← Expand(cha)
7 for i ∈ {0, . . . , r − 1} do
8 Di ← AbiBi ; // Note that ϕbi ◦Di = ψi.

9 end
10 return S = (cha, D0, . . . , Dr−1).

3.4 Unbalanced challenge space

In Algorithm 2, note that when bi = C, we have Di = Bi, a random matrix not related
to the private key. Therefore, we can use a seed in place of Bi, which saves signature size
as we only need to send a seed of size λ, rather than n2 field elements. This observation
leads to unbalancing the challenge space (as discussed already in [FS86]), reducing the

9 In the implementation, it is feasible to reduce it to C forms since ϕC can be stored as the seed.
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Algorithm 3: Verification procedure.
Input: The public key ϕ0, . . . , ϕC ∈ ATF(n, q). The signature S = (cha, D0, . . . , Dr−1), bi ∈ {0, . . . , C},

Di ∈ GL(n, q). The message M . A hash function H : {0, 1}∗ → {0, 1}2λ. An expander
Expand : {0, 1}2λ → {ai}i∈{0,...,r−1}, where ai ∈ {0, . . . , C}.

Output: “Yes” if S is a valid signature for M . “No” otherwise.
1 for i ∈ {0, . . . , r − 1} do
2 Compute ψ′

i = ϕbi ◦Di.
3 end

4 Compute cha′ = H(M |ψ′
0| . . . |ψ′

r−1) ∈ {0, 1}2λ.
5 (b′0, . . . , b

′
r−1)← Expand(cha′)

6 if for every i ∈ {0, . . . , r − 1}, bi = b′i then
7 return Yes
8 else
9 return No

signature size. Specifically, we will sample r challenges (b0, . . . , br−1) ∈ {0, . . . , C}r with
the property that |{i ∈ [r] | bi = C}| = r − K. We denote Cr,K as such unbalanced
challenge space. To achieve λ bits of security, we need to choose proper parameters r,K
and C, such that

(
r
K

)
· CK ≥ 2λ.

3.5 The complete scheme

We now present the key generation, signing, and verification pseudocodes for ALTEQ, as
depicted in Figure 1, and 2. The hash functions employed are from the SHA3 family, and
the expanders are based on SHAKE except expandChallenge which is based on AES. To im-
prove the efficiency of the scheme in handling a long messageM , H(H(M)||ψ0|| . . . ||ψr−1)
is used rather than H(M ||ψ0|| . . . ||ψr−1) For a matrix B, Bcol indicates that B is repre-
sented as a product of column matrices.

KGen

1 : seedsk ←R {0, 1}2λ

2 : {seedski}i∈{0,...,C} ← expandSeeds(seedsk, C + 1)

3 : ϕC ← expandATF(seedskC )

4 : for i ∈ {0, . . . , C − 1} do

5 : Acol
i ← expandColumns(seedski)

6 : ϕi ← invertingOnATF(ϕC , A
col
i )

7 : endfor

8 : return (pk = (ϕ0, . . . , ϕC−1, seedskC ), sk = seedsk)

Fig. 1: The pseudo-code for key generation algorithm of ALTEQ.
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Sign(sk,M)

1 : {seedski}i∈{0,...,C} ← expandSeeds(seedsk, C + 1)

2 : ϕC ← expandATF(seedskC )

3 : seed←R {0, 1}λ

4 : {seedi}i∈{0,...,r−1} ← expandSeeds(seed, r)

5 : salt←R {0, 1}2λ

6 : for i ∈ {0, . . . , r − 1} do
7 : Bcol

i ← expandColumns(seedi||salt||i)
8 : endfor

9 : {ψi}i∈{0,...,r−1} ← actingOnATFS(ϕC , {Bcol
i }i∈{0,...,r−1}, r) // ψi ← ϕC ◦Bi for i ∈ {0, . . . , r − 1}

10 : cha ∈ {0, 1}2λ ← H(H(M)||ψ0|| . . . ||ψr−1) // H is a hash function

11 : (c0, . . . , cr−1)← expandChallenge(cha) // Generating challenge in Cr,K , where ci ∈ {0, . . . , C}

12 : for i ∈ {0, . . . , r − 1} do
13 : if ci == C then

14 : Append(seedi, Sig) // Putting seedi into Sig

15 : else

16 : Acol
ci ← expandColumns(seedskci )

17 : Di ← columnsMatrix(Acol
ci , B

col
i ) // Di = AciBi

18 : Dcol
i ← columnsDecomposition(Di) // If column decomposion fails, then the Sign() will restart from line 3

19 : Append(Dcol
i , Sig) // Putting Dcol

i into Sig

20 : endfor

21 : return Sig = (cha, salt, {seedi}i s.t. ci=C , {Dcol
i }i s.t. ci ̸=C)

Vf(pk,M, Sig)

1 : ϕC ← expandATF(seedskC )

2 : (c0, . . . , cr−1)← expandChallenge(cha)

3 : for i ∈ {0, . . . , r − 1} do
4 : if ci == C then

5 : D
′col
i ← expandColumns(seedi||salt||i)

6 : else

7 : D′col
i ← Dcol

i

8 : endfor

9 : {ψ′
i} ← actingOnATFS(ϕC , {D

′col
i }i∈{0,...,r−1}, r) // ψ′

i ← ϕC ◦D′
i

10 : cha′ ∈ {0, 1}2λ ← H(H(M)||ψ′
0|| . . . ||ψ′

r−1)

11 : if cha == cha′&checkInvertibility({D′col
i }) then // if all Di are invertible matrices then return True, otherwise return False.

12 : return Y es

13 : else

14 : return No

Fig. 2: The pseudo-code for sign and verification processes of ALTEQ.
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3.6 The formulas for public key, private key, and signature sizes

The following formulas give the public key, private key, and signature sizes in bits, based
on the parameters n, q, r, K, and C.

PubKeySize = C ·
(
n

3

)
· ⌈log2(q)⌉+ 2 · λ, (3)

PriKeySize = 2 · λ (4)

SigSize = (r −K + 4) · λ+K · n2 · ⌈log2(q)⌉. (5)

4 Implementation details

We implement several optimizations for modular arithmetic, group actions, and seed
expansion. We also provide AVX2 acceleration.

4.1 Modular arithmetic

Operating on matrices and tensors require multiple computations of a sum of products
of elements over Fq. Therefore, we will use only one single modulo i.e. q = 232 − 5. This
choice allows to use a large field without using multiprecision arithmetic. Consequently,
each multiplication need to be follow immediately by a modular reduction. Regarding
modular addition, multiple operation can be done before a modular reduction. As q is a
Pseudo-Mersenne number [Cra92], a modular reduction is done by a shift, an addition
and multiplication by a constant. To guarantee than the result stays on 32 bits, a second
round of modular reduction will need to be performed.

4.2 Representing invertible matrices and their actions

An invertible matrix is represented as a product of n invertible column matrices. Here,
a column matrix is equal to the identity matrix for each coefficient but one column.
Not all invertible matrices cannot be decomposed in such product (without the use of
a permutation matrix), but the number of matrices not decomposable directly in such
product of column matrices is negligible.

Once in the form of the product of n column matrices, a matrix can be applied to
an alternating trilinear form in a simpler and faster way: each column matrix, one after
the other, can be applied directly to the alternating trilinear without passing by a costly
tensor form. We include the details in Appendix B. Consequently, we obtain a reduction
from 7/4 · n4 to 1/2 · n4 of the number of field multiplications required. This gain is
especially evident in the verification process, as a majority of the cases are expanded
from random seeds.

Finally, it is important to note that we can efficiently compute the matrix correspond-
ing to the product of column matrix by performing such product itself. The product of
a dense matrix by a column matrix will cost n2 field multiplications. In this scheme, we
will need to compute the product of 2n columns matrices. However, the first n column
matrices product will cost less than n2 fields multiplications because such product are
with elements corresponding to zero and therefore does not need to be computed. The
reason is that the identity matrix will still have (n − 1) · (n − k) elements equal to zero
after k products by a columns matrix. This is correct if columns are ordered as in our
implementation.
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4.3 Seed expansion

As we have multiple random objects to generate, we try to minimize the call to seed
expander. To this end, for random matrices and random ATFs, we simply randomly
generate a large number of value in [0, 232). The elements will discarded in the rare cases
that is not falling in [0, q) or if is equal to 0 in the case of element of the diagonal of a
column matrix.

For generating the challenges, we need multiple values with different sizes: both for
the challenge value different from C and to determine where the challenge is equal to
C. This last step corresponds to pick K elements among r elements. It is important to
note that to minimize the call to seed expander, the approach will be different if r−K is
smaller than K. For such cases, we pick r −K elements among r elements for the same
result. For all those reasons, when generating the challenges, we keep in a buffer each
random bit generated by the seed expander to avoid unnecessary calls.

4.4 AVX2 acceleration

To fully utilize AVX acceleration, the representations of multiple ATFs have been inter-
twined: on the array representing ATF, the consecutive value does not correspond to the
same ATF, but rather to the value having the same index in a different ATF. Concretely,
the element corresponding to ATFr(i, j, k) is not followed by ATFr(i, j, k + 1) but by
ATFr+1(i, j, k). Consequently, when we need to compute the action of different matrices
on multiple ATFs, this can be done in a vectorize manner.

Hashing function and seed expansion can also take advantage of AVX acceleration.
For our symmetric needs, we borrow solutions from some previous submission to NIST
PQC standardization, such as Dilithium as well as from XKCP. The Dilithium team has
already proposed an efficient and dedicated versions of AES utilizing AVX acceleration.
Regarding Keccak, XKCP offers a version that is fully utilizing AVX as well. While
these implementations have been slightly modified to fit our scheme, they should be fully
credited to the Dilithium and XKCP teams, and they have been put in two separate
folders, aes and keccak, to this end.

Furthermore, while our implementation has been optimized and parameterized for
AVX2, it will strongly take the advantage of AVX512 as well.

Finally, our scheme could be accelerated even further by using multithreading. As it
requires a dedicated implementation, we did not investigate such option to focus princi-
pally on AVX2 acceleration.

5 Performance analysis

We provide two sets of parameters for each security level I and III. The first set is called
Balanced, and the second set is called ShortSig. We also make a suggestion for the security
level V.

5.1 Key and signature sizes

In Table 2, we list the parameters for the balanced-ALTEQ for security levels I, III, and
V. Note that for level I, the public key+signature size is below 24KB. For level III, the
public key+signature size is below 80KB.
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Parameter
set

Parameters
(n, q, r,K,C)

Private key
Size (Bytes)

Public key
Size (Bytes)

Signature
Size (Bytes)

Public key + signature
Size (Bytes)

I (13, 232 − 5, 84, 22, 7) 32 8040 15928 23968

III (20, 232 − 5, 201, 28, 7) 48 31968 49048 81016

Table 2: Key and Signature Sizes for Balanced-ALTEQ

In Table 3, we list the parameters for the ShortSig-ALTEQ for security levels I, III,
and V. Note that for level I, the public key size is below 512KB and the signature size
is below 10KB. For level III, the public key size is below 1MB and the signature size is
below 32KB. For level V, the public key size is below 2MB and the signature size is below
64KB.

Parameter
set

Parameters
(n, q, r,K,C)

Private key
Size (Bytes)

Public key
Size (Bytes)

Signature
Size (Bytes)

I (13, 232 − 5, 16, 14, 458) 32 523984 9560

III (20, 232 − 5, 39, 20, 229) 48 1044288 32552

Table 3: Key and Signature Sizes for ShortSig-ALTEQ

5.2 Performance

We test our codes on a machine with the following configurations.

– Processor: Intel Xeon E-2288G 3.7GHz 8 cores 16MB L3 Cache HT Enabled (Max
Turbo Freq. 5.0GHz, Min 4.7GHz).

– Memory: 64GB.
– Operating system: Red Hat Enterprise Linux 8.6 (Ootpa).
– Compiler: gcc version 8.5.0 20210514 (Red Hat 8.5.0-10).

Our results are as follows. The numbers in the following Tables are averages over 1000
runs. We report the averages, and the medians are quite close to the averages.

parameter set Key gen Sign Verify Sign+verify

I
cycles 355823 2742843 2111536 4854379

time (ms) 0.104 0.753 0.571 1.324

III
cycles 2234848 28464537 26202672 54667209

time (ms) 0.613 7.694 7.068 14.762

Table 4: Performance of Balanced-ALTEQ.

parameter set Key gen Sign Verify

I
cycles 9109864 953166 347494

time (ms) 2.444 0.252 0.096

III
cycles 21527851 7121466 4993178

time (ms) 5.782 1.929 1.363

Table 5: Performance of ShortSig-ALTEQ.
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6 Security reductions

In this section we discuss the EUF-CMA security of ALTEQ in the random oracle model
(ROM) and the quantum random oracle model (QROM). First we introduce the assump-
tions on which the security of ALTEQ is based. Then we will provide insights for the
security reduction and lay the security foundation of our scheme.

6.1 Assumptions

The starting point is the following algorithmic problem.

The ATFE Problem. The decision version of the alternating trilinear form equivalence
(ATFE) problem is as follows. Given two alternating trilinear forms ϕ, ψ : Fnq ×Fnq ×Fnq →
Fq, decide whether there exists A ∈ GL(n, q) such that ϕ = ψ ◦ A or not.

Two variants of the basic ATFE problem are as follows. See [TDJ+22, Remark 2] a
discussion of their relations with the basic ATFE problem.

The psATFE Problem. The promised search version of the alternating trilinear form
equivalence problem (psATFE) is the following. Given two alternating trilinear forms
ϕ, ψ : Fnq × Fnq × Fnq → Fq, with the promise that ϕ ∼ ψ, output A ∈ GL(n, q) such that
ϕ = ψ ◦ A.

The C-psATFE Problem. The promised search version of the alternating trilinear form
equivalence problem with C-instances (m-psATFE) is the following. Given C alternating
trilinear forms ϕ1, . . . , ϕC : Fnq × Fnq × Fnq → Fq, with the promise that ϕi ∼ ϕj for any
i, j ∈ [C], output some A ∈ GL(n, q) and i, j ∈ [C], i ̸= j, such that ϕi = ϕj ◦ A.

The following automorphism version of the ATFE problem is also of interest. See
[TDJ+22, Section 3.2] for a discussion on this.

The ATFA problem. The alternating trilinear form automorphism problem (ATFA) asks
the following: given a random alternating trilinear form ϕ : Fnq × Fnq × Fnq → Fq, decide
whether there exists a non-identity A ∈ GL(n, q) such that ϕ ◦ A = ϕ.

The following problem models the pseudorandom group action notion introduced in
[JQSY19,AFMP20]. See [TDJ+22, Section 4.2] for some evidences supporting that this is
a hard problem.

The C-PR-psATFE-RO Problem. The pseudorandom alternating trilinear form equiv-
alence problem with K random instances (C-PR-psATFE-RO) asks to distinguish the
following two distributions.

The random distribution: C alternating trilinear forms ϕ0, ϕ1, . . . , ϕC−1 : Fnq × Fnq ×
Fnq → Fq, drawn as (ϕ0, ϕ1, . . . , ϕC−1)←R ATF(n, q)C .

The pseudorandom distribution: C alternating trilinear forms ϕ0, ϕ1, . . . , ϕC−1 : Fnq×
Fnq × Fnq → Fq, such that: (1) ϕ0 ←R ATF(n, q), and (2) for i ∈ [C − 1], ϕi := ϕ0 ◦Ai,
where Ai ∈R GL(n, q).
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6.2 Security of ALTEQ

The EUF-CMA security of ALTEQ in ROM was proved in [TDJ+22, Theorem 1] assuming
the hardness of the C-psATFE problem. This follows the standard arguments for the
security of the Goldreich–Micali–Wigderson protocol as a Sigma protocol, as observed by
many people.

The EUF-CMA security of ALTEQ in QROM was shown in [BCD+22] via two ap-
proaches, based on the works [KLS18,LZ19,DFMS19].

The first approach is based on the perfect unique response property. To satisfy this
property, it is required that a random alternating trilinear form ϕ : Fnq × Fnq × Fnq → Fq
has no non-identity automorphisms. In [BCD+22], evidences were provided supporting
that this is indeed the case for n ≥ 10. However, the security reduction here is not tight.

The second approach is based on the lossy approach as in [KLS18]. This gives a
tight security reduction. For the lossy approach, two properties are needed, namely the
computational unique response property and the lossy property. The former translates to
the hardness of the ATFA problem, and the latter translates to the hardness of the C-PR-
psATFE-RO problem. In particular, the advantage of the adversary is upper bounded by
the sum of the advantages of adversaries for ATFA, C-PR-psATFE-RO, and a term that
is close to 1/2λ for our choices of n and q.

Note also that these securities are preserved after incorporating multiple keys in each
round and unbalanced challenges; see [BBPS21,BCD+22].

In fact the above EUF-CMA security in the QROM model can be strengthened to the
stronger sEUF-CMA security, in which the adversary will win if he/she can produce a
new signature for a message that he/she already saw a signature returned by the signing
oracle. See [BCD+22] for more details.

6.3 Algorithms and complexity of the ATFE problem

We’ve shown how ATFE and its variants support the EUF-CMA security of ALTEQ in ROM
and QROM in Section 6.2. In Section 6.1, we gave pointers to the literature where the
relations of variants of ATFE and the basic ATFE were discussed. So it remains to present
the current status of the basic ATFE problem. We briefly show some key points here; a
survey of the complexity and main algorithms for ATFE can be found in Appendix A.

First, ATFE is shown in [GQT21] to be complete for a complexity class called Tensor-
Isomorphism (TI). TI was recently introduced in [GQ21b], and TI-complete problems
include many isomorphism problems arising from several research communities, such as
coding theory, cryptography, theoretical computer science, and computational group the-
ory. Despite research efforts from these communities, these problems are regarded as
difficult to solve in practice. This gives us confidence in the worst-case hardness of ATFE.
We briefly describe them in Appendix A.1.

Second, we analyze known algorithms for ATFE from Appendix A.2 to Appendix A.7,
including Gröbner basis attacks, graph-theoretic algorithms by Beullens [Beu22], quan-
tum random walks attacks, min-rank attack as well as a recent low-rank birthday attack
by Qiao [NQT24]. These attacks are accounted for in our parameter selection.

It should be noted that, because of the connections with many isomorphism problems,
the algorithmic techniques for ATFE have been drawn from years of research experience
of these computational areas for such problems. Also, the quantum random walk attacks
are quantum adaptations of the best known classical attacks. While these yield in a
polynomial factor runtime speedup in the attacks, they are not accounted for in parameter
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selection. The reason being that they require exponential quantum memory, which is
surely a scarcer resource that runtime.

7 Parameter choices

Our parameter choices are based on the following considerations.

1. Let λ be the target security level.
2. Select the dimension n based on the direct Gröbner basis attack in Section A.2.
3. Select the field order q based on the low-rank birthday attack in Section A.5.
4. Select the round number r, the unbalanced parameter K, and the form number in

each round C based on Section 6.2.

7.1 The choices of n

This is set up based on the direct Gröbner basis attack in Section A.2. We compare the
three modellings of polynomial systems we are aware of in Appendix A.2. We note that
to estimate the solving degrees of these systems is a major open problem. Lacking proper
tools to understand them, we resort to the estimates of semi-regular systems [BFSY05].
Based on the discussions in Section A.2, we estimate that the direct Gröbner basis attack
based on quadratic with inverse modellings, and the results are given in Table 6.

7.2 The choices of q

After selecting n, the choice of q is based on the low-rank birthday attack in Section A.6.
This relies on the rank statistics of n.

Let ϕ : Fnq ×Fnq ×Fnq → Fq be an alternating trilinear form. Let P(Fnq ) be the projective
space associated with Fnq , consisting of lines in Fnq . That is, for v ∈ Fnq , v ̸= 0, we let
v̂ := {u ∈ Fnq | u = α · v, α ∈ Fq}. For v̂ ∈ P(Fnq ), let rkϕ(v̂) be the rank of the bilinear
form ϕv̂ := ϕ(v, ·, ·). When it is clear from the context, we may just write as rk(v̂).

Based on Theorem 1 from [Beu22], the following data are most relevant to our choice
(see also Table 10 and 11).

1. For n = 13, for a random ϕ, it is expected that |{v̂ | rkϕ(v̂) = 8}| ≈ q6. It is also
expected that 1/q3-fraction of ϕ has v̂ such that rkϕ(v̂) = 6.

2. For n = 20, for a random ϕ, it is expected that |{v̂ | rkϕ(v̂) = 14}| ≈ q9. It is also
expected that 1/q2-fraction of ϕ has v̂ such that rkϕ(v̂) = 12.

The low-rank birthday algorithm in [NQT24] described in Section A.6 yield the fol-
lowing. Let minrank-cost(n, k, r) denote the min-rank cost for sampling a rank-r matrix
from the linear span of k n× n matrices.

1. For n = 13, an algorithm with O(q3 ·minrank-cost(13, 7, 8) ·136) arithmetic operations.
2. For n = 20, an algorithm with O(q4.5 ·minrank-cost(20, 11, 14) · 206) arithmetic oper-

ations.

We use the algorithm10 from [BBC+20] to estimate the min-rank cost as follows.

1. minrank-cost(13, 7, 8) ≈ 232.

10 We compared the estimates below with the estimates based on the analysis of the Kipnis–Shamir system
[KS99] in [VBC+19], and found that the ones from [BBC+20] are lower.
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2. minrank-cost(20, 11, 12) ≈ 257. Here we use the parameter b = 4 as in [BBC+20].

We now summarise the arithmetic complexities for the direct Göbner basis attack
and the low-rank birthday attack for n = 13 and n = 20 with q being a 32-bit prime in
Table 6.

Quadratic with inverse GB, arithmetic low-rank birthday, arithmetic

n = 13, q = 232 − 5 ≈ 2143 ≈ 2128

n = 20, q = 232 − 5 ≈ 2219 ≈ 2202

Table 6: Arithmetic complexities of the two attacks.

The above discussions are for numbers of arithmetic operations. These already suffice
for levels I and III. To translate to bit complexities, we need to add the bit operation
complexity for modular multiplications as O(log2(q)).

7.3 The choices of C, r, and K

We use the unbalanced challenge technique as in Section 3.4. This relies on three param-
eters, the round number r, the unbalanced parameter K, and the form number in each
round C. To achieve the λ bit security, we require that

(
r
K

)
·CK ≥ 2λ. Table 7 illustrates

the bit securities of our choices of r, K, and C in Section 5.

parameter set r K C
security level of
ALTEQ (bit)

I
84 22 7 128.1
16 14 458 130.6

III
201 28 7 192.0
39 20 229 192.7

Table 7: The bit security of ALTEQ for the choices of C, r and K used in Section 5.
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BCD+22. Markus Bläser, Zhili Chen, Dung Hoang Duong, Tuong Ngoc Nguyen, Thomas Plantard, Youming
Qiao, Willy Susilo, and Gang Tang. On digital signatures based on isomorphism problems: QROM
security, ring signatures, and implementations. IACR Cryptol. ePrint Arch., page 1184, 2022.

BCH+23. Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer, Bo-Yuan Peng, Cheng-
Jhih Shih, and Bo-Yin Yang. Oil and vinegar: Modern parameters and implementations. IACR
Cryptol. ePrint Arch., page 59, 2023.

BCP97. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory
(London, 1993).

Beu22. Ward Beullens. Graph-theoretic algorithms for the alternating trilinear form equivalence problem.
IACR Cryptol. ePrint Arch., page 1528, 2022.

BFFP11. Charles Bouillaguet, Jean-Charles Faugère, Pierre-Alain Fouque, and Ludovic Perret. Practical crypt-
analysis of the identification scheme based on the isomorphism of polynomial with one secret problem.
In International Workshop on Public Key Cryptography, pages 473–493. Springer, 2011.
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A Complexity and algorithms for ATFE

In this appendix, we provide an overview of the complexity and algorithms for ATFE.

A.1 ATFE from the computational complexity viewpoint

The Tensor Isomorphism-complete class (TI) introduced in [GQ21b] captures many iso-
morphism problems arising from multivariate cryptography, machine learning, quantum
information, coding theory, and computer algebra. In [GQT21], ATFE was proved to be
TI-complete. Among those TI-complete problems, the following algorithmic problems are
of particular relevance.

Definition 1. The 3-tensor isomorphism problem (3TI) is the following.

Input Two 3-way arrays D = (di,j,k), E = (ei,j,k), where di,j,k, ei,j,k ∈ Fq and i, j, k ∈ [n].
Output “Yes” if there exist A = (ai,r), B = (bj,s), C = (ck,t) ∈ GL(n, q), such that

D = (A,B,C)⋆E, where (A,B,C)⋆E := F = (fi,j,k), fi,j,k =
∑

r,s,t∈[n] ai,rbj,sck,ter,s,t.
“No” otherwise.

The 3TI is just the matrix code equivalence problem, on which the scheme MEDS is
based on [CNP+22].

Definition 2. The cubic form isomorphism problem (CFI) is the following.

Input Two cubic forms (homogeneous degree-3 polynomials) f, g ∈ Fq[x1, . . . , xn].
Output “Yes” if there exists A = (ai,j) ∈ GL(n, q), such that f = A⋆g, where the action

of A on g is by sending xi to
∑

j∈[n] ai,jxj. “No” otherwise.

CFI has been studied in multivariate cryptography [BFFP11] and theoretical computer
science [AS05,AS06].

Definition 3. The quadratic form map isomorphism problem (QFMI) is the following.

Input Two tuples of quadratic forms f = (f1, . . . , fm), g = (g1, . . . , gm), where fi, gj ∈
Fq[x1, . . . , xn] are quadratic forms (homogeneous degree-2 polynomials).

Output “Yes” if there exist A = (ai,j) ∈ GL(n, q), B = (bi,j) ∈ GL(m, q), such that
∀i ∈ [m], f ′i = A⋆gi, where f

′
i =

∑
j∈[m] bi,jfj, and the action of A on gi is by sending

xi to
∑

j∈[n] ai,jxj. “No” otherwise.

QFMI has been studied in multivariate cryptography. It was first raised by Patarin
[Pat96] and has been studied in several works including [FP06,BFV13,BFP15].

The polynomial-time equivalence between ATFE, 3TI, CFI and QFMI suggest that
ATFE is a difficult algorithmic problem, at least from the worst-case analysis viewpoint.

Finally we mention the following linear code monomial equivalence problem.

Definition 4. The linear code monomial equivalence problem (LCME) is the following.
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Input Two d× n matrices over Fq, D,E ∈ M(d× n, q)
Output “Yes” if there exist A ∈ GL(d, q), B an n×n monomial matrix11 over Fq, such

that D = AEB. “No” otherwise.

LCME is used as the security basis of the LESS scheme [BMPS20]. In [GQ21a], it was
shown that LCME reduces to 3TI, and therefore to ATFE too.

A.2 The direct Gröbner basis attack

Let ϕ, ψ ∈ ATF(n, q) be two alternating trilinear forms. We wish to decide if there exists
A ∈ GL(n, q) such that ϕ = ψ ◦ A. The Gröbner basis attack is the following. First,
formulate a polynomial system whose solutions are isomorphisms from ϕ to ψ. Second,
use the polynomial solvers, such as Göbner basis and XL, to solve such systems.

Two ways of formulating as polynomial systems are as follows. Both depend on the
following data from ϕ and ψ.

From ϕ : Fnq ×Fnq ×Fnq → Fq be an alternating trilinear form. Then construct a matrix
tuple A = (A1, . . . , An) ∈ M(n, q)n, where Ak(i, j) = ϕ(ei, ej, ek). Recall that ei is the ith
standard basis vector.

Similarly, from ψ : Fnq × Fnq × Fnq → Fq, we construct B = (B1, . . . , Bn) ∈ M(n, q)n.

The direct cubic modelling. The following modelling is straightforward. LetX = (xi,j)i,j∈[n]
be an n× n variable matrices. Set up the following equations.

1. For i ∈ [n], set
∑

j∈[n] xi,j ·X tAiX = Bi.

Note that by alternating, the above setup uses n2 variables to set up
(
n
3

)
inhomo-

geneous equations. Also note that here we do not need to impose that X is invertible,
because ϕ and ψ are non-degenerate12 with high probability.

The quadratic with inverse modelling. This is the formulation studied in [TDJ+22], which
traced back to [BFFP11] for cubic form equivalence.

Let X = (xi,j)i,j∈[n] and Y = (yi,j)i,j∈[n] be two n × n variable matrices. Set up the
following equations.

1. Set XY = In and Y X = In. This imposes that X and Y are inverses to each other.
2. For i ∈ [n], set X tAiX =

∑
j∈[n] yi,jBj, and Y

tBiY =
∑

j∈[n] xi,jAj.

The above setup uses 2n2 variables to set up 2n2+2·n·
(
n
2

)
= 2n(

(
n
2

)
+n) inhomogeneous

quadratic equations.

The quadratic dual modelling. This formulation is due to [RRST23]. Let X = (xi,j)i,j∈[n]
be an n× n variable matrix. Let y be a variable.

Let ℓ =
(
n
2

)
− n, and let C1, . . . , Cℓ be a basis of the linear space {D ∈ Λ(n, q) |

Tr(BiD
t) = 0}, where Tr denotes taking the trace of a matrix.

Set up the following equations.

1. For i ∈ [n], j ∈ [ℓ], Tr(X tAiXD
t) = 0.

2. Let the (1, 2) entry of X tA1X be q, which is a homogeneous quadratic polynomial in
xi,j. Set q · y = 1.

11 That is, a matrix with each row and each column containing exactly one non-zero entry.
12 ϕ is degenerate if there exists a non-zero vector u ∈ Fn

q such that for every v, w ∈ Fn
q , ϕ(u, v, w) = 0.
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The above setup uses n2 + 1 variables to set up (
(
n
2

)
− n) · n + 1 equations. Among

them, (
(
n
2

)
− n) · n are homogeneous quadratic polynomials in n2 variables. The extra

cubic equation, q · y = 1, is introduced to prevent some undesirable solutions such as
rank-1 matrices13.

Practical evaluations of the three modellings. We carried out experiments for all the above
methods on Magma [BCP97].

All work for n = 5 on a laptop14.

Modelling Direct cubic Quadratic with inverse Quadratic dual

Time < 0.01s ≈ 35s ≈ 11s

Step 4 15 13

Max degree 7 7 7

Memory 900MB 800 to 900MB 800 to 900 MB

Table 8: Performance of the three modellings for n = 5.

For n = 6, we put the experiments on a server15.

Modelling Direct cubic Quadratic with inverse Quadratic dual

Time ≈ 300s between 79000s and 90000s Could not finish after three weeks

Step 21 48 5 (stuck at)

Max degree 7 7 7 (stuck at)

Memory 4.2GB 167GB 170GB

Table 9: Performance of the three modellings for n = 6.

For n = 7, the direct cubic modelling failed after taking more than 300GB memory.
We computed the Hilbert series for the homogeneous parts of the three modellings,

and they do not resemble generic polynomial systems with the same variable and equation
numbers. To estimate the solving degrees and to investigate into these modellings is an
open problem.

Estimations based on semi-regular assumptions. We therefore adopt the following ap-
proach as a guide. We are aware that these systems are not homogeneous nor semi-
regular, so this approach should not be applicable. But we resort to it due to the lack of
appropriate tools at the moment.

First, we decide to follow the (unrealistic) assumption that these systems behave as
semi-regular systems. Second, the regularity for cubic systems is usually much larger
than quadratic ones, so for the sake of conservation, we drop the direct cubic modelling,
despite that its performance is better than the other two. Third, we drop the quadratic

13 The authors of [RRST23] did not include this cubic equation. Without this cubic equation, all rank-1 matrices
and some rank-2 matrices are in the solution space, which is problematic for the XL method. Furthermore,
the semi-regularity assumption made in [RRST23] does not hold, as some syzygies do appear, which need
to be taken into account for the regularity calculations. Given these considerations as well as the practical
performances in Table 9, we chose not to adopt their estimations presented at CBCrypto when preparing this
document. We thank the authors of [RRST23] for communicating their discoveries to us.

14 MacBook Pro, Apple M1 Pro chip, 32 GB memory.
15 2x AMD EPYC 7532 2.40GHz 32 cores 256M L3 Cache (Max Turbo Freq. 3.33GHz), 1024GB 3200MHz ECC

DDR4-RAM (Eight Channel).
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dual modelling, because its performance at n = 6 is much worse than the other two (see
also Footnote 13).

This leaves us with the quadratic with inverse modelling. Following [YC04], we com-

pute the regularity degrees d, use
(
2n2+d
d

)
as the Macaulay matrix sizes and 2 ·

(
n
2

)
+ n

as the density. Based on the formula 3 · (Macaulay-mat-size)2 · density as used in Rain-
bow [sCDK+21] and UOV [BCH+23], we have the following estimates for the number of
arithmetic operations.

1. n = 13, regularity d = 11, Macaulay-mat-size ≈ 267, and arithmetic operations ≈ 2143.
2. n = 20, regularity d = 15, Macaulay-mat-size ≈ 2104, and arithmetic operations ≈ 2219.

A.3 The Gröbner basis attack with partial information

In the following we follow the quadratic with inverse modelling as this is more thoroughly
studied.

The information of one row of X. Recall that in the quadratic with inverse modelling,
there are two variable matrices X and Y . It has been observed from experiments that, if
the entries on the first column ofX is set to scalars, then the Gröbner basis execution runs
in estimated time O(n2·ω · log(q)) [TDJ+22, Assumption 1]. This observation goes back to
[BFFP11] for cubic form equivalence. Geometrically, this means that we’ve guessed the
image of some vector v under the matrix X.

When n ≤ 8. When n ≤ 8, we have n2 >
(
n
3

)
, that is, |GL(n, q)| > |ATF(n, q)| for n ≤ 8.

This allows to randomly set some entries of X while still preserving the existence of a
solution. This is in the spirit of hybrid Gröbner basis algorithms and also exploit the fact
that many solutions may exist, especially in small dimension. It is reported in [TDJ+22]
that, this method leads to a very fast attack on n = 7 and permits breaking n = 8.
However, n = 9 remains out of range of this improvement.

A.4 Rank statistics of random alternating trilinear forms

Let P(Fnq ) be the projective space associated with Fnq , consisting of lines in Fnq . That is,
for v ∈ Fnq , v ̸= 0, we let v̂ := {u ∈ Fnq | u = α · v, α ∈ Fq}. For v̂ ∈ P(Fnq ), let rkϕ(v̂) be
the rank of the bilinear form ϕv̂ := ϕ(v, ·, ·). When it is clear from the context, we may
just write as rk(v̂).

Let ϕ : Fnq × Fnq × Fnq → Fq be a random alternating trilinear form. That is, each of

the
(
n
3

)
coefficients is uniformly randomly sampled from Fq. For given n, q, and r ∈ N,

we are interested in the average number of v̂ such that ϕv̂ is of rank r. Experimental data
of such distributions for small n and q were shown in [TDJ+22], and [Beu22, Theorem 1]
gave formulas for such distributions.

Theorem 1 ([Beu22, Theorem 1]). Let ϕ ∈ ATF(n, q) be an alternating trilinear
form. Let d, d1, d2 ∈ [n] such that n− d, n− d1, n− d2 are even numbers. Let G(ϕ, d) :=
{v̂ ∈ P(Fnq ) | rkϕ(v̂) = n − d}, and G(ϕ, d1, d2) := {(v̂1, v̂2) | v2 ∈ ker(ϕv̂), rkϕ(v̂1) =
n− d1, rkϕ(v̂) = n− d2}.

As q →∞, the average size of |G(ϕ, d)| over a uniformly randomly sampled alternating
trilinear form ϕ tends to qn−2+(−d2+3d)/2, and the average size of |G(ϕ, d1, d2)| over a
uniformly randomly sampled alternating trilinear form ϕ tends to qn−6+(−d21−d22+5(d1+d2))/2.
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The following Tables 10, 11 are based on Theorem 1.

rank 12 10 8 6

count q12 q11 q6 1/q3

Table 10: The rank statistics for n = 13.

rank 18 16 14 12

count q19 q16 q9 1/q2

Table 11: The rank statistics for n = 20.

Weak keys. Based on Theorem 1, Beullens noted that for some n, there are weak keys
[Beu22]. Take n = 10 as an example. The highest rank in this setting is 8. By Theorem 1,
with probability ∼ 1/q, there is a unique v̂ of rank 4. This can then be combined with the
Gröbner basis with partial information method, to give a fast algorithm, as the problem
completely boils down to find this unique v̂.

Because of this, we choose n = 13 and 20, for which the probability of generating
weak keys for a 32-bit prime q is at most 1/264.

A.5 The low-rank collision attack

In [Beu22], Beullens designed novel algorithms for ATFE. We describe the algorithm that
is most relevant to our setting, and refer the readers to other beautiful algorithms in
[Beu22]. We call the following algorithm the low-rank collision attack.

The main idea. The main idea is as follows. Let ϕ : Fnq × Fnq × Fnq → Fq. Suppose by
Theorem 1, it is expected that there are roughly qk many v̂ ∈ P(Fnq ), such that rkϕ(v̂) = r.

To test isomorphism from ϕ to ψ, we can first sample qk/2 rank-r (projective) points
each from ϕ and ψ, and then find a collision, i.e. (û, v̂) such that the isomorphism A(û) =
v̂, via the Gröbner basis with partial information method16.

Therefore, the cost of the low-rank collision attack is of the following form:

O(qk/2 · samp-cost+ qk · col-cost).

The collision cost col-cost can be estimated as O(n6) from experiments. The sampling
cost samp-cost refers to the cost of sampling a rank-r (projective) point.

The straightforward way to sample a rank-r point is to formulate it as a min-rank
problem. We will discuss this further in Section A.6. Beullens’ main novel contribution
lies in the sampling step, which we call the graph walking method.

16 As in [Beu22], the Gröbner basis with partial information method needs to be strengthened as follows. Suppose
v ∈ Fn

q satisfies that the rank of the bilinear form ϕv̂ : Fn
q × Fn

q → Fq is r < n. Then it is sufficient to guess
the image of v under the matrix X up to a scalar, as the kernel of ϕv̂ can be incorporated to provide further
information.
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The graph associated with an alternating trilinear form. Let ϕ : Fnq × Fnq × Fnq → Fq
be an alternating trilinear form. The graph associated with ϕ is G(ϕ) = (V,E) where
V = P(Fnq ), and for u, v ∈ P(Fnq ), {u, v} ∈ E if and only if ϕ(u, v, x) = 0 for all x ∈ Fnq .
Note that {u, v} ∈ E if and only if the linear form obtained by instantiating the first
two arguments of ϕ to u and v is the zero linear form. Such graphs have been used in
algorithms for other related isomorphism problems [BFV13].

We can then assign labels to the vertices of G(ϕ) as follows. It is clear that rk(v̂) is
an isomorphism invariant, that is, if ϕ and ψ are equivalent, then any isomorphism sends
v̂ of rk(v̂) = r to some û of the same label.

The graph walking method. To sample a rank-r point v̂, Beullens uses the graph walk
method. That is, suppose we start with v̂ of a large rank (i.e. rk(v̂) = n− 1 if n is odd,
and rk(v̂) = n − 2 if n is even). It is easy to compute the neighbours of v̂ on G(ϕ) by
computing the kernel of the matrix ϕ(v, ·, ·). Then the question of whether the kernel
contains a low-rank vector û can be modelled as a min-rank problem with only n − r
matrices. We can use the estimate of min-rank by Bardet et al [BBC+20]. Combining
with the rank distributions, the probability of the neighbours in v̂ having a small-rank
one can be computed. This leads to a sampling procedure of low-rank vectors.

For example, when n = 13, we can set r = 8. By Table 10, we expect to get one
rank-10 û after q samples. We also expect that, after getting q rank-10 vectors û, there
exists a rank-8 v̂ in the neighbourhood of û. Therefore, the total cost of sampling one
rank-8 is q2 times the min-rank cost in 3 matrices of size 13× 13, which can be estimated
as O(n11) [BBC+20].

A.6 The low-rank birthday attack

In [NQT24], a new heuristic algorithm for ATFE was proposed. The main innovation of
that algorithm is to associate distinguishing isomorphism invariants to low-rank points.

The main idea. We briefly describe the idea here. Let ϕ : Fnq ×Fnq ×Fnq → Fq. Suppose by
Theorem 1, it is expected that there are roughly qk many û ∈ P(Fnq ), such that rkϕ(û) = r.

Let us assume that there is an easy-to-compute, distinguishing, isomorphism invari-
ant17 for those rank-r û.

Then the algorithm goes as follows: first sample O(qk/2)-many rank-r points for ϕ, and
O(qk/2)-many rank-r points for ψ. For each point, compute this isomorphism invariant.
Then by birthday paradox, there exist one point û from ϕ and one point v̂ from ψ such
that their isomorphism invariants are the same. Finally, use Göbner basis with partial
information for û and v̂ to recover the desired isomorphism.

The running time of the above algorithm can then be estimated as

O(qk/2 · (samp-cost+ inv-cost) + gb-cost).

We estimate the sampling cost, samp-cost, and the invariant (computation) cost, inv-cost,
as follows. Note that the Gröbner basis cost gb-cost can be estimated as O(n6), which is
minor compared to the first term.

17 That is a function f from low-rank points to some set S, such that f(û) ̸= f(v̂) for û ̸= v̂, and f is unchanged
by basis changes.
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The sampling step. The sampling step can be done by either the min-rank method, or
the graph-walking method. The graph-walking method involves q, which is usually large,
so we use the min-rank method by [BBC+20].

Suppose we wish to sample a rank-r point v̂ ∈ P(Fnq ) for ϕ. We construct a min-rank
instance as follows. For i ∈ [n], let Ai be the alternating matrix representing the bilinear
form ϕei , where ei is the ith standard basis vector. Let xi, i ∈ [n], be formal variables,
and set A =

∑
i∈[n] xiAi. It is expected that there are qk-many rank-r projective points

for ϕ. So for i ∈ [2 . . . k + 1], let xi = αix1, where αi ∈R Fq. This gives us a min-rank
instance with n− k variables of size n× n.

An important note is that the min-rank instance above has some structural constraints
due to alternating trilinear forms. As pointed out in [Beu22], such structures should
impact the min-rank algorithm from [BBC+20] adversely. Still, we use the estimates from
[BBC+20] as they should serve as a lower bound. We also compare the estimates from
[BBC+20] with the analysis of the Kipnis–Shamir modelling [KS99] in [VBC+19], and
found the ones from [BBC+20] are lower.

Consider an (n, k, r) minrank instance, namely finding a rank-r matrix in a linear
span of k n × n matrices. First, we need to compute the smallest b such that b < r + 2
and (

n

r

)(
k + b− 1

b

)
− 1 ≤

b∑
i=1

(−1)i+1

(
n

r + i

)(
n+ i− 1

i

)(
k + b− i− 1

b− i

)
.

Based on this b, the complexity is estimated as

O
(
k · (r + 1) · (

(
n

r

)
·
(
k + b− 1

b

)
)2
)
.

The isomorphism invariant step. The inv-cost is the main novel step of [NQT24]. The
key is to observe the following. Suppose û ∈ P(Fnq ) satisfies that rkϕ(û) = r. Then
K := ker(ϕû) ≤ Fnq is a dimension-(n−r) space, also preserved by any isomorphism. This

allows us to consider the trilinear form ϕ̂ : K×Fnq ×Fnq → Fq, and it can be verified easily

that the isomorphic type of ϕ̂ under GL(K)×GL(n, q) is an isomorphism invariant.
In [NQT24], experiments were carried out to show that the isomorphic type of ϕ̂ is

distinguishing. Furthermore, because u ∈ K due to alternating, to test isomorphism be-
tween two such trilinear forms can be done via the Gröbner basis with partial information
method. The cost for this step can then be estimated as O(n6) based on [BFFP11].

It should be noted that, just testing isomorphism here is not enough, and canonical
forms are required to serve as an isomorphism invariant. Even though to transform an
isomorphism invariant algorithm to a canonical form one may not be an easy process,
it is generally regarded as doable, at least from the experience from graph isomorphism
[Bab16]. Therefore, we take the conservative approach, namely assuming a canonical form
algorithm matching the isomorphism testing algorithm running time.

A.7 Solving ATFE and psATFE through quantum random walks

Classical naive exhaustive search algorithms for ATFE and psATFE can be quadratically
sped up on a quantum computer using Grover’s search [Gro96]. The speedup at best
brings the asymptotic runtime down to O(qn

2/2), since the generic orbit to search in is
of size at least Ω (|GL(n, q)|). In comparison, the more sophisticated classical algorithms
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(in sections A.3 and A.4) are much faster. To speed up these more sophisticated classical
algorithms, we deploy certain extensions of Grover’s algorithm through quantum random
walks on an exponentially large graph. The prospect of a quadratic speedup using simple
Groverization warrants further investigation.

The first extension of Grover of relevance to us is an algorithm for collision detec-
tion due to Brassard, Høyer, and Tapp [BHT98], special to two-to-one functions. Am-
banis removed these restrictions and devised improved collision detection algorithms
through quantum random walks, that match lower bounds [Amb07]. Szegedy further
improved these algorithms and brought them under a unified framework of quantum
random walks with memory [Sze04]. We will use Szegedy’s version of quantum ran-
dom walks for cubic quantum speedups of classical algorithms to the decision version
ATFE. Extensions of Szegedy’s algorithm by Magniez, Nayak, Richter, Roland, and San-
tha [MNRS07,MNRS12] may be deployed to tackle the search version psATFE within
the same running time. Another extension/application of Szegedy’s algorithm is to claw
finding, by Tani [Tan09]. The claw finding formalism is particularly convenient to phrase
psATFE in and infer a cubic speed up.

In applying these quantum random walk algorithms, we will invoke generic algorithms
applicable to functions on finite sets presented as an oracle. Taking into account struc-
tures special to our problem; such as the expansion of the Cayley graphs underlying our
problems may lead to gains in the polynomial factors. For clarity of exposition, we refrain
from exploiting such structures. Instead, we will focus on speedups to the main exponen-
tial term and suppress incremental polynomial factors.

We next describe how to deploy these quantum random walk algorithms to ATFE/
psATFE resulting in polynomial improvements to the asymptotic runtime complexity.
However, they come at the cost of exponential quantum memory and hence will not be
considered for benchmarking.

A classical oracle from the Gröbner basis attack with partial information. Let ϕ and ψ
denote the two input trilinear forms with the existence of an A ∈ GLn(Fq) such that
ψ = ϕ◦A in question. Central to all our methods is a polynomial time classical algorithm
to test membership in the relation set

Rϕ,ψ := {(u, v) ∈ Fnq × Fnq | ∃A such that ψ = ϕ ◦ A and Au = v}.

If ϕ and ψ are not isomorphic, Rϕ,ψ is empty. A pair (u, v) ∈ Fnq × Fnq satisfying Au = v
enforces n Fq-linear constraints on A. The Gröbner basis attack with partial information
in section A.3, augmented with these linear constraints can tell in polynomial time if the
pair (u, v) is in Rϕ,ψ. We henceforth make the same assumptions. Further, incorporate a
time out clause into the membership algorithm to make the Gröbner basis methods stop
searching and declare non existence.

Solving ATFE through quantum random walks. We devise an algorithm for the search
version ATFE through Szegedy’s quantum random walk. We first paraphrase theorem 3
in [Sze04], specialized to the oracle function being the identity. Let X be a finite set and
R ⊂ X × X a binary relation with a membership tester. For a positive real number α
and a uniformly random subset H ⊂ X of size |X|α, let pα denote the probability that
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R ∩ (H × H) is non empty. There is a quantum algorithm to differentiate between the
cases pα = 0 and pα ≥ ϵ in time O(|X|α + 1000

√
|X|α/ϵ).

Invoke Szegedy’s algorithm with X as Fnq , R as Rϕ,ψ, α as 1/3 and uniformly sampling

an H ⊂ Fnq of size Θ
(
qn/3

)
. We claim that the probability gap may be taken to be

ϵ = Ω
(
q−n/3

)
. To prove the claim, consider two isomorphic ϕ and ψ. That is, there exists

at least one Aϕ,ψ ∈ GL(n,Fq) such that ψ = ϕ ◦ Aϕ,ψ. Therefore,

Prob ((Rϕ,ψ ∩ (H ×H)) ̸= ∅) ≥ Prob ((H ∩ Aϕ,ψ(H)) ̸= ∅) ≥ Ω
(
q−n/3

)
,

proving the claim. In summary, we can tell if ϕ and ψ are isomorphic in time O(qn/3) on
a quantum computer.

Solving psATFE through quantum random walks. This strategy also tackles the promise
search version psATFE within the same running time, thanks to extensions of Szegedy’s
algorithm by Magniez, Nayak, Richter, Roland, and Santha [MNRS07,MNRS12]. Another
extension of Szegedy’s algorithm is to claw finding, by Tani [Tan09]. The claw finding
formalism is convenient to phrase psATFE in and infer polynomial speed ups. Let f :
X → Z and g : Y → Z be two functions between finite sets. Given oracle access to f
and g, the claw finding problem is to find an (x, y) ∈ X × Y such that f(x) = g(y), if
one exists. The functions may be presented either as standard oracles or as comparison
oracles. We describe the later in the quantum setting, as they suffice. A comparison oracle
maps quantum states

|x, y, b, w⟩ 7−→ |x, y, b⊕ [f(x) >? g(y)], w⟩.

Here, b is a bit; x and y respectively index quantum states corresponding to elements
in X and Y . Fixing an ordering on Z, [f(x) >? g(y)] is a bit that is one if and only if
f(x) > g(y). The last register indexed by w is an ancilla for work space. For instances
with X and Y of roughly the same size, Tani’s algorithm finds claws on a quantum com-
puter in time O((|X||Y |)1/3).

To phrase psATFE as claw finding, independently draw uniformly random sets X ⊂ Fnq
and Y ⊂ Fnq , each of size qn/2. Take f : X → Fnq as the multiplication by A map u 7−→ Au
and g : Y → Fnq as the identity. The birthday paradox ensures for isomorphic ϕ and ψ
that there is a solution to claw finding with constant positive probability. The algorithm
for testing membership in Rϕ,ψ from the previous subsection yields a comparison oracle.
Tani’s algorithm for claw finding solves psATFE in time O(qn/3).

Low rank sampling and quantum random walks The quantum random walk method also
seems to work in concert with the more sophisticated algorithms in sections A.5 and
A.6. It remains to work out the details and quantify the resulting polynomial quantum
speed up. Again, this will be at the cost of exponential quantum storage and will not be
considered for benchmarking. For instance, if there is a rank r such that Rϕ,r := {v̂ ∈
P(Fnq ) | rkϕ(v̂) = r} (or equivalently Rψ,r := {v̂ ∈ P(Fnq ) | rkψ(v̂) = r}) is small (say qδn)
and it is possible to sample efficiently from Rϕ,r (or equivalently Rψ,r); then by setting
X = Rϕ,r ∪ Rψ,r, we can tell if ϕ and ψ are isomorphic in time O(qδn/3) on a quantum
computer. Large ranks such as r = n are easy to sample but correspond to large Rϕ,r

or Rψ,r. To sample from Rϕ,r or Rψ,r for small r, we may look to the rank distribution
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results in Buellen’s low-rank collision method. The low-rank birthday attack is a more
refined than low-rank collision methods in that it uses a more distinguishing invariant
that the rank. We suspect that the quantum random walk method speeds up the low-rank
collision method to give a O(qk/3) quantum run time.

B Column matrix decomposition and action on trilinear forms

Definition 5. A matrix C ∈ F n×n is a column matrix, if it is of the form

C =



1 . . . 0 c1 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 ci−1 0 . . . 0
0 . . . 0 ci 0 . . . 0
0 . . . 0 ci+1 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 cn 0 . . . 1


for some i.

Corollary 1. For every invertible matrix A, there is a permutation matrix P such that
such that AP is the product of 2(n− 1) column matrices.

Note that the diagonal matrix in the definition of Û can be merged with the matrices
of the factoriztion of Û into column matrices.

Multiplication of alternating trilinear forms with column matrices. Let C be a column
matrix with entries c1, . . . , cn in column i. The matrix C maps an unit vector eh to

Ceh =


eh if h ̸= i,
n∑
j=1

cjej otherwise.

Let T be an alternating trilinear form, that is,

T =
∑

1≤r<s<t≤n

tr,s,t · er ∧ es ∧ et.

We have

C∧3T =
∑

1≤r<s<t≤n

tr,s,t · C(er) ∧ C(es) ∧ C(et).

C only changes ei. ei appears in
(
n−1
2

)
of the summands. Consider each summand sepa-

rately. Assume w.l.o.g. that ei appears in the first position,

ti,r,s · ei ∧ er ∧ es.

C∧3 maps this summand to

ti,r,s ·

(
n∑
i=1

cjej

)
∧ er ∧ es =

n∑
j=1

cj · ti,r,s︸ ︷︷ ︸
1 mult.

·ej ∧ er ∧ es.
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Thus, we have to compute n multiplications and n− 1 additions (updates of the entries
ej ∧ er ∧ es with j ̸= i). Therefore, the total costs are

(
n−1
2

)
·n ≤ n3/2 multiplications and(

n−1
2

)
· (n− 1) ≤ n3/2 additions.

If the matrix C has only k nonzero entries in column i, then the bounds reduce to(
n−1
2

)
· j ≤ n2 · j/2 multiplications and

(
n−1
2

)
· (j − 1) ≤ n2 · j/2 additions. The LUP

decomposition yields a decomposition of any invertible matrix A into 2(n − 1) column
matrix with a total of ≈ n2 nonzero entries. Therefore, we can implement the action of
A∧3 with n4/2 multiplications and n4/2 additions.

In the actual implementation, we have to do a modular reduction after each application
of a column matrix. Therefore, we try to minimize the number of column matrices in a
decomposition of A. (Obviously, it cannot be lower than n.)

Optimal decomposition into column matrices. Let

A =



1 . . . 0 a1 ∗ . . . ∗
...
. . .

...
...

...
...

0 . . . 1 ai−1 ∗ . . . ∗
0 . . . 0 ai ∗ . . . ∗
0 . . . 0 ai+1 ∗ . . . ∗
...

...
...

...
. . .

...
0 . . . 0 an ∗ . . . ∗


.

If ai ̸= 0, then let B be the column matrix

B =



1 . . . 0 −a1/ai 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 −ai−1/ai 0 . . . 0
0 . . . 0 1/ai 0 . . . 0
0 . . . 0 −ai+1/ai 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 −an/ai 0 . . . 1


.

Then

BA =



1 . . . 0 0 ∗ . . . ∗
...
. . .

...
...
...

...
0 . . . 1 0 ∗ . . . ∗
0 . . . 0 1 ∗ . . . ∗
0 . . . 0 0 ∗ . . . ∗
...

...
...
...
. . .

...
0 . . . 0 0 ∗ . . . ∗


.

By using induction, we can find column matrices B1, . . . , Bn with Bi having column i
such that

BnBn−1 · · ·B1A = I.
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The inverse of B is

B−1 =



1 . . . 0 a1 0 . . . 0
...
. . .

...
...

...
...

0 . . . 1 ai−1 0 . . . 0
0 . . . 0 ai 0 . . . 0
0 . . . 0 ai+1 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 an 0 . . . 1


.

We can write
A = B−11 B−12 · · ·B−1n .

By counting dimension, it is obvious that there cannot be a shorter decomposition of A
into column matrices.
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